Bus Arrival Time Prediction with LSTM Neural Network

A. Agafonov, A. Yumaganov
Samara National Research University

Task definition

- Public transport arrival time prediction to stops
- Take into account different factors that characterize the traffic state
- Develop a distributed prediction model

Task

- Real-time processing
- High accuracy

Initial data. Preprocessing

- GPS coordinates are obtained every 30 seconds
- Coordinates are fitted using information about the road network geometry and transport routes
- Travel times for each road link are calculated

Problem formulation

- S is the set of stops;
- R is the set of routes;
- N is the maximum number of route links;
- $t_{i}^{d e p}$ the departure time from stop $i \in S$;
- $t_{j}^{\text {arr }}$ is the arrival time at stop $j \in S$;
- $T_{i j}^{\text {travel }}$ the travel time between stops i and j.

$$
t_{j}^{a r r}=t_{i}^{d e p}+T_{i j}^{\text {travel }}
$$

Feature vector: base factors

To estimate the travel time $T_{i j}^{\text {travel }}$ we used the following factors:

- day, time
- $v_{i-1, i}$ - travel speed on the previous route link
- h^{r} - time headway to the preceding vehicle with the same route
- $T_{i j}^{m, r}$ travel time of the preceding vehicle m with the same route r
- $\tilde{T}_{i j}^{r}$ - weighted travel time of preceding vehicles with the same route:

$$
\tilde{T}_{i j}^{r}=\frac{\sum_{k \in N_{r}} \omega\left(t-t_{i}^{\text {dep }, k}\right) T_{i j}^{\text {travel }, k}}{\sum_{k \in N_{r}} \omega\left(t-t_{i}^{\text {dep }, k}\right)}
$$

Feature vector

- $h^{\text {any }}$ - time headway to the preceding vehicle with any route
- $T_{i j}^{m, a n y}$ - travel time of the preceding vehicle with any route
- $\tilde{T}_{i j}^{\text {any }}$ - weighted travel time of preceding vehicles with any route
- $T_{i j}^{\text {hist }}(t)$ - historical average travel time
- $T_{i j}^{\text {fow }}(t)$ - historical average travel time by traffic flow data
- $c_{i j}$ - number of vehicles on the targeted route link

$$
X_{i, j}=\left(\text { day }, \text { time }, v_{i-1, i}, h^{r}, T_{i j}^{m, r}, \tilde{T}_{i j}^{r}, h^{a n y}, T_{i j}^{m, a n y}, \tilde{T}_{i j}^{a n y}, T_{i j}^{h i s t}, T^{f o w}, c_{i j}\right)
$$

Long short-term memory (LSTM) cell

$h_{\mathrm{t}}{ }^{\hat{4}}$

LSTM network

Long short-term memory (LSTM) neural network

Input data

Output data

Model analysis

Comparison:

- Proposed / Base LSTM models
- ANN, 1 hidden layer
- Linear Regression

$$
\mathrm{MAE}=\frac{1}{n} \sum_{t=1}^{n}\left|V_{t}-\hat{V}_{t}\right|
$$

$$
\mathrm{MAPE}=\frac{1}{n} \sum_{t=1}^{n} \frac{\left|V_{t}-\hat{V}_{t}\right|}{V_{t}} \times 100 \%
$$

Data set:

- Five bus routes
- Average route length is 16 km
- Travel time observations in 30 days

Model analysis. MAE / MAPE

Table: Algorithms Comparison

	MAE	MAPE
LSTM	$\mathbf{2 2 . 1 2}$	$\mathbf{1 9 . 7 8}$
Base LSTM	23.64	21.24
ANN	25.54	23.25
Regression	26.89	25.19

Model analysis. MAE / MAPE for routes

Model analysis. MAE / MAPE

MAE, seconds

MAPE, \%

Model analysis. Execution time

Intel Core i5-3740 3.20 GHz, 8 GB RAM / Nvidia GeForce GTX 1080 Ti

Conclusion

The proposed LSTM based arrival time prediction model has the following advantages:

- Combines different factors describing the traffic situation.
- It has high prediction accuracy.
- It has a low computation time.

Thank you!

Anton Agafonov
ant.agafonov@gmail.com

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. RFMEFI57518X0177)

